Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cells ; 10(11)2021 11 09.
Article in English | MEDLINE | ID: covidwho-1512136

ABSTRACT

(1) Background: The coronavirus (COVID-19) pandemic is still a major global health problem, despite the development of several vaccines and diagnostic assays. Moreover, the broad symptoms, from none to severe pneumonia, and the various responses to vaccines and the assays, make infection control challenging. Therefore, there is an urgent need to develop non-invasive biomarkers to quickly determine the infection severity. Circulating RNAs have been proven to be potential biomarkers for a variety of diseases, including infectious ones. This study aimed to develop a genetic network related to cytokines, with clinical validation for early infection severity prediction. (2) Methods: Extensive analyses of in silico data have established a novel IL11RA molecular network (IL11RNA mRNA, LncRNAs RP11-773H22.4 and hsa-miR-4257). We used different databases to confirm its validity. The differential expression within the retrieved network was clinically validated using quantitative RT-PCR, along with routine assessment diagnostic markers (CRP, LDH, D-dimmer, procalcitonin, Ferritin), in100 infected subjects (mild and severe cases) and 100 healthy volunteers. (3) Results: IL11RNA mRNA and LncRNA RP11-773H22.4, and the IL11RA protein, were significantly upregulated, and there was concomitant downregulation of hsa-miR-4257, in infected patients, compared to the healthy controls, in concordance with the infection severity. (4) Conclusion: The in-silico data and clinical validation led to the identification of a potential RNA/protein signature network for novel predictive biomarkers, which is in agreement with ferritin and procalcitonin for determination of COVID-19 severity.


Subject(s)
COVID-19/diagnosis , Gene Regulatory Networks , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Adult , Biomarkers/blood , COVID-19/genetics , COVID-19/metabolism , Computational Biology , Female , Humans , Interleukin-11 Receptor alpha Subunit/blood , Interleukin-11 Receptor alpha Subunit/genetics , Male , MicroRNAs/blood , RNA, Long Noncoding/blood , RNA, Messenger/blood , ROC Curve , SARS-CoV-2/isolation & purification , Severity of Illness Index
2.
Sci Rep ; 11(1): 7991, 2021 04 12.
Article in English | MEDLINE | ID: covidwho-1180274

ABSTRACT

To conquer the worldwide outbreak of COVID-19 virus, a large number of studies have been carried out on COVID-19 infection, transmission and treatment. However, few studies have been conducted from the perspectives of circRNA and lncRNA, which are known to be involved in regulating many life activities, such as immune tolerance and immune escapes, and hence may provide invaluable information in the emerging COVID-19 infection and recurrence. Moreover, exosomes has been reported to play an important role in COVID-19 recurrence, and thus may interact with the expression of circRNA and lncRNA. In this work, we sequenced circRNA, lncRNA and mRNA from recurrent COVID-19 patients and healthy people, and compared the differences. GO and KEGG enrichment analysis show that differentially expressed circRNA and lncRNA are mainly involved in the regulation of host cell cycle, apoptosis, immune inflammation, signaling pathway and other processes. The comparison to exosomes related databases shows that there are 114 differentially expressed circRNA, and 10 differentially expressed lncRNA related to exosomes. These studies provide reference for exploring circRNA and lncRNA to study the infection mechanism of COVID-19, their diagnostic and therapeutic values, as well as the possibility to employ them as biomarkers.


Subject(s)
COVID-19/blood , COVID-19/virology , RNA, Circular/blood , RNA, Long Noncoding/blood , Apoptosis , Biomarkers , COVID-19 Nucleic Acid Testing , Computational Biology , Exosomes/metabolism , Gene Expression Profiling , Gene Expression Regulation , Humans , Models, Statistical , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Recurrence , Signal Transduction
3.
Mediators Inflamm ; 2021: 6635925, 2021.
Article in English | MEDLINE | ID: covidwho-1175215

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was initially identified in China and currently worldwide dispersed, resulting in the coronavirus disease 2019 (COVID-19) pandemic. Notably, COVID-19 is characterized by systemic inflammation. However, the potential mechanisms of the "cytokine storm" of COVID-19 are still limited. In this study, fourteen peripheral blood samples from COVID-19 patients (n = 10) and healthy donors (n = 4) were collected to perform the whole-transcriptome sequencing. Lung tissues of COVID-19 patients (70%) presenting with ground-glass opacity. Also, the leukocytes and lymphocytes were significantly decreased in COVID-19 compared with the control group (p < 0.05). In total, 25,482 differentially expressed messenger RNAs (DE mRNA), 23 differentially expressed microRNAs (DE miRNA), and 410 differentially expressed long noncoding RNAs (DE lncRNAs) were identified in the COVID-19 samples compared to the healthy controls. Gene Ontology (GO) analysis showed that the upregulated DE mRNAs were mainly involved in antigen processing and presentation of endogenous antigen, positive regulation of T cell mediated cytotoxicity, and positive regulation of gamma-delta T cell activation. The downregulated DE mRNAs were mainly concentrated in the glycogen biosynthetic process. We also established the protein-protein interaction (PPI) networks of up/downregulated DE mRNAs and identified 4 modules. Functional enrichment analyses indicated that these module targets were associated with positive regulation of cytokine production, cytokine-mediated signaling pathway, leukocyte differentiation, and migration. A total of 6 hub genes were selected in the PPI module networks including AKT1, TNFRSF1B, FCGR2A, CXCL8, STAT3, and TLR2. Moreover, a competing endogenous RNA network showed the interactions between lncRNAs, mRNAs, and miRNAs. Our results highlight the potential pathogenesis of excessive cytokine production such as MSTRG.119845.30/hsa-miR-20a-5p/TNFRSF1B, MSTRG.119845.30/hsa-miR-29b-2-5p/FCGR2A, and MSTRG.106112.2/hsa-miR-6501-5p/STAT3 axis, which may also play an important role in the development of ground-glass opacity in COVID-19 patients. This study gives new insights into inflammation regulatory mechanisms of coding and noncoding RNAs in COVID-19, which may provide novel diagnostic biomarkers and therapeutic avenues for COVID-19 patients.


Subject(s)
COVID-19/blood , COVID-19/genetics , RNA/blood , RNA/genetics , SARS-CoV-2 , Adult , Aged , COVID-19/complications , Case-Control Studies , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/genetics , Cytokines/biosynthesis , Cytokines/genetics , Female , Gene Expression , Humans , Inflammation Mediators/blood , Male , MicroRNAs/blood , MicroRNAs/genetics , Middle Aged , Pandemics , Protein Interaction Maps/genetics , RNA, Long Noncoding/blood , RNA, Long Noncoding/genetics , RNA, Messenger/blood , RNA, Messenger/genetics , Sequence Analysis, RNA , Signal Transduction , Exome Sequencing , Young Adult
4.
J Transl Med ; 18(1): 422, 2020 11 10.
Article in English | MEDLINE | ID: covidwho-916977

ABSTRACT

BACKGROUND: In the present study the blood expression level of inflammatory response and autoimmunity associated long non-coding RNAs (lncRNAs) were compared in patients with different chronic respiratory diseases and investigated whether they could be used as biomarkers in these diseases. METHODS: In the discovery cohort, the gene expression level of 84 lncRNAs were measured in the blood of 24 adult patients including healthy controls and patients with asthma and COPD. In the replication cohort the expression of 6 selected lncRNAs were measured in 163 subjects including healthy controls and adults with allergic rhinitis, asthma, COPD and children with asthma. It was evaluated whether these lncRNAs can be used as diagnostic biomarkers for any studied disease. With systems biology analysis the biological functions of the selected lncRNAs were predicted. RESULTS: In the discovery cohort, the mean expression of 27 lncRNAs showed nominally significant differences in at least one comparison. OIP5-AS1, HNRNPU, RP11-325K4.3, JPX, RP11-282O18.3, MZF1-AS1 were selected for measurement in the replication cohort. Three lncRNAs (HNRNPU, RP11-325K4.3, JPX) expressed significantly higher in healthy children than in adult controls. All the mean expression level of the 6 lncRNAs differed significantly between adult allergic rhinitis patients and controls. RP11-325K4.3, HNRNPU and OIP5-AS1 expressed higher in allergic asthma than in non-allergic asthma. COPD and asthma differed in the expression of RP11-325K4.3 from each other. In examining of the lncRNAs as biomarkers the weighted accuracy (WA) values were especially high in the comparison of healthy controls and patients with allergic rhinitis. OIP5-AS1 and JPX achieved 0.98 and 0.9 WA values, respectively, and the combination of the selected lncRNAs also resulted in a high performance (WA = 0.98). Altogether, OIP5-AS1 had the highest discriminative power in case of three out of six comparisons. CONCLUSION: Differences were detected in the expression of circulating lncRNAs in chronic respiratory diseases. Some of these differences might be utilized as biomarkers and also suggest a possible role of these lncRNAs in the pathomechanism of these diseases. The lncRNAs and the associated pathways are potential therapeutic targets in these diseases, but naturally additional studies are needed for the confirmation of these results.


Subject(s)
Asthma/diagnosis , Pulmonary Disease, Chronic Obstructive/diagnosis , RNA, Long Noncoding , Rhinitis, Allergic/diagnosis , Adult , Biomarkers , Child , Humans , RNA, Long Noncoding/blood
5.
J Cell Mol Med ; 25(10): 4753-4764, 2021 05.
Article in English | MEDLINE | ID: covidwho-1148073

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic worldwide. Long non-coding RNAs (lncRNAs) are a subclass of endogenous, non-protein-coding RNA, which lacks an open reading frame and is more than 200 nucleotides in length. However, the functions for lncRNAs in COVID-19 have not been unravelled. The present study aimed at identifying the related lncRNAs based on RNA sequencing of peripheral blood mononuclear cells from patients with SARS-CoV-2 infection as well as health individuals. Overall, 17 severe, 12 non-severe patients and 10 healthy controls were enrolled in this study. Firstly, we reported some altered lncRNAs between severe, non-severe COVID-19 patients and healthy controls. Next, we developed a 7-lncRNA panel with a good differential ability between severe and non-severe COVID-19 patients using least absolute shrinkage and selection operator regression. Finally, we observed that COVID-19 is a heterogeneous disease among which severe COVID-19 patients have two subtypes with similar risk score and immune score based on lncRNA panel using iCluster algorithm. As the roles of lncRNAs in COVID-19 have not yet been fully identified and understood, our analysis should provide valuable resource and information for the future studies.


Subject(s)
COVID-19/diagnosis , RNA, Long Noncoding , Aged , Aged, 80 and over , Biomarkers/blood , Case-Control Studies , Female , Humans , Male , Middle Aged , RNA, Long Noncoding/blood , RNA, Long Noncoding/physiology , Risk Assessment , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL